eternity report detail
eternity report detail
Recommendation Engine For Financial Services Market

Recommendation Engine for Financial Services Market By Product Type (Collaborative Filtering, Content-Based Filtering, Hybrid Recommendation), By Deployment Model (On-Premises, Cloud Based) By Technology (Machine Learning & Deep Learning, Natural Language Processing, Geospatial Aware ) By Region (North America, Europe, Asia Pacific, Middle East & Africa, Latin America) and Forecasts to 2027

  • No of Pages: 220
  • Published On: Apr 2022
  • Format: PDF
  • Report ID : 95780

Report Summary

Market Synopsis

The global Recommendation Engine for Financial Services market has registered US$ 344.2 million in 2020, and projected to reach at US$ 4073.5 million by 2027, growing at a CAGR of 36.8% during 2021-2027. Recommendation engine using AI helps systems to analyze, learn and adapt new data which is further processed without human intervention. Financial industry has a large set of customers for which general applications or traditional product search engines may not be efficient in terms of providing accurate results. To analyze and process such large data the system needs to use Artificial intelligence, especially machine learning. The recommendation engine uses different algorithms which are designed in such a manner that will help customers to select the financial products that will provide the best value proposition.

Increasing use of technology for analysing large complex data, and growth in digitalization rate to boost the growth of recommendation engine for financial services market

Financial Industries are adopting AI in their fields by using their large set of customer data to provide its customer with customized experiences and tailored services. Several financial companies have their respective algorithms to provide the best possible recommendation engine for their customers. However, this concept is relatively new and there are continuous upgrades in the algorithms so as to provide the best customer experience. Moreover, financial data is large and complex data that is continuously changing. Also, the existing patterns of the data may get changed which the algorithm has to take into account. Moreover, with the inclusion of more financial products and services the technology/ the algorithm also has to take these new products into consideration. Thus, there will be continuous growth in this market due to ever-changing demands in the financial industry.

Digitalization is increasing rapidly across the globe. Moreover, the adoption of digitalization is higher in countries Like China, India, and Indonesia which happen to have the highest population respectively. The rise in digitalization is also helping to enhance financial literacy, financial institutions have become aware of the importance of digitization and promoting their products on all types of online platforms. Digitalization has helped financial institutions reach common people through which the awareness about financial products has been increased across various financial products platforms. Users have become more aware of banking, stock trading, mortgages, insurances, cryptocurrency platforms, and other finance platforms.  Besides this, recommendation engines allow user-friendly browsing and show the products or information to the customer as per the previous search. In addition, mobile phone ownership is rapidly contributing to financial products growth and prompting several financial institution websites to embrace recommendation engines. Increase in digitization is resulting in the growth of financial literacy which is further accelerating the growth of this market indirectly.

Product Type Insights

Based on product type, the global market can be segmented into collaborative filtering, content-based filtering and hybrid recommendation. The collaborative filtering is anticipated to be the dominant segment throughout the forecast period. Collaborative filters predict personal preferences of buyers by tracking their searches, likes and dislikes for products. They also track the behavior of their peers who have similar personal demographics. The collected information is then connected to a database that stores data related to preferences of another set of buyers to look for matches and predict purchasing behavior


Deployment Model Insights

By deployment model, the global market has been categorized into on-premises and cloud based. The on-premises segment is expected to be the dominant segment throughout the forecast period. Financial industry across the globe is highly regulated industry. For On-premise deployment the company has to have its own hardware, software licenses, security policies and skilled workforce. However, on-premise applications are reliable, secure, and allow enterprises to maintain a level of control that the cloud often cannot.

Technology Insights

By technology, the global market has been categorized into machine learning & deep learning, natural language processing and cloud based. The machine learning & deep learning segment is expected to be the dominant segment throughout the forecast period. Machine learning algorithms study the pattern from the available data, group them, classify them, and form groups or clusters, etc. When new data comes in, it thus easily identifies the cluster it belongs to. In terms of recommendation engine, it first captures the past behavior of users who share similar preferences and recommends products that the users are likely to buy. Based on algorithms and recommends the most relevant items to users.


North America is the largest market for the recommendation engine for financial services market. North American financial institutions are digitalizing and adopting artificial intelligence, machine learning, recommendation engine and other advanced technologies. The U.S has more than 70% of the market share in this region. The presence of top banks and tech giant firms has resulted in the growth in this region. American Express has built its own recommendation engine for obtaining new customers and increase sales.

Competitive Landscape

Some of the prominent companies involved in global recommendation engine for financial services market includes Adobe, Google LLC, Hewlett Packard Enterprise, IBM Corporation, Intel Corporation, Microsoft Corporation, Oracle, Salesforce, SAP SE and ABAKA Holdings Ltd.

Report Scope and Segmentation



Study Period


Base Year


Forecast Period



US$ Mn

By Product Type

  • Collaborative Filtering
  • Content-Based Filtering
  • Hybrid Recommendation

By Deployment Model

  • On-Premises
  • Cloud Based

By Technology

  • Machine Learning & Deep Learning
  • Natural Language Processing
  • Geospatial Aware

By Region

  • North America
  • Europe
  • Asia Pacific
  • Middle East & Africa
  • Latin America

Request TOC

* marked fields are mandatory

Choose License Type

Request Sample Ask For Customization Inquire Before Buying Ask for Discount

Need Assistance?

We will be happy to help you find what you need. Please call us or write to us:

Why Eternity Insights?


To ensure high-level data integrity, accurate analysis, and impeccable forecasts


For complete satisfaction


On-demand customization of scope of the report to exactly meet your needs


Targeted market view to provide pertinent information and save time of readers


A faster and efficient way to cater to the needs with continuous iteration

Frequently Asked Questions on this Report

The Recommendation Engine For Financial Services Market is segmented based on Type, Application, and by region.

Adobe, Google LLC, Hewlett Packard Enterprise, IBM Corporation, Intel Corporation, Microsoft Corporation, Oracle, Salesforce and SAP SE and ABAKA Holdings Ltd. are the leading players of global Recommendation Engine For Financial Services market.

The forecast period would be from 2022 to 2030 in the market report with year 2021 as a base year.

Factors such as competitive strength and market positioning are key areas considered while selecting top companies to be profiled.
eternity report detail

To learn more about this report

Similar Reports
What Sets Us Apart?
Quality Assurance

Focus on Data Accuracy & Reliability

Trusted by the Best

75+ Clients in Fortune 500

Privacy and Security

All your transactions are secured end-to-end, ensuring a satisfactory purchase

Value for Money

Ensure the best and affordable pricing

Our Happy Customers
Some of our customer review
Our Clients
Our capabilities includes
Market intelligence
  • Market Sizing And Forecasting
  • Growth Drivers And Challenges
  • Key Industry Trends Analysis
  • Porters Five Forces Analysis
  • Demand Gap Analysis
Consumer Behavior Mapping
  • Consumer Purchase Behaviour Analysis
  • Customer Satisfaction & Loyalty Analysis
  • Concept/Product Testing
  • Campaign Effectiveness And Ad Testing Research
Market Entry and Expansion Strategy
  • Market Opportunity Assessment
  • Merger & Acquisition Analysis
  • Go-to-market Strategy
  • Blue Ocean Strategy
  • Investment Due Diligence
  • Value Chain Analysis Consulting Solutions
  • Business Model Research
  • Innovation Analysis
  • Technology Portfolio Assessment
  • Influencer Mapping
  • Social Media Research
  • Supplier, Distributor And Partner Identification
Competitive Intelligence
  • Company Profiles with detailed Financial Analysis
  • Product Portfolio Analysis
  • Market Share Analysis
  • Product Pricing Analysis
  • Winning Imperatives of Leading Players
  • Marketing and Market Penetration Strategies
  • Product Pipeline Analysis
  • Conference Coverage
  • SWOT Analysis